Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38472720

RESUMO

Human pluripotent stem cells, such as human embryonic stem cells and human induced pluripotent stem cells, are used in basic research and various applied fields, including drug discovery and regenerative medicine. Stem cell technologies have developed rapidly in recent years, and the supply of culture materials has improved. This has facilitated the culture of human pluripotent stem cells and has enabled an increasing number of researchers and bioengineers to access this technology. At the same time, it is a challenge to share the basic concepts and techniques of this technology among researchers and technicians to ensure the reproducibility of research results. Human pluripotent stem cells differ from conventional somatic cells in many aspects, and many points need to be considered in their handling, even for those experienced in cell culture. Therefore, we have prepared this proposal, "Points of Consideration for Pluripotent Stem Cell Culture," to promote the effective use of human pluripotent stem cells. This proposal includes seven items to be considered and practices to be confirmed before using human pluripotent stem cells. These are laws/guidelines and consent/material transfer agreements, diversity of pluripotent stem cells, culture materials, thawing procedure, media exchange and cell passaging, freezing procedure, and culture management. We aim for the concept of these points of consideration to be shared by researchers and technicians involved in the cell culture of pluripotent stem cells. In this way, we hope the reliability of research using pluripotent stem cells can be improved, and cell culture technology will advance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38169039

RESUMO

Trisomy 12 is one of the most frequent chromosomal abnormalities in cultured human pluripotent stem cells (hPSCs). Although potential oncogenic properties and augmented cell cycle caused by trisomy 12 have been reported, the consequences of trisomy 12 in terms of cell differentiation, which is the basis for regenerative medicine, drug development, and developmental biology studies, have not yet been investigated. Here, we report that trisomy 12 compromises the mesendodermal differentiation of hPSCs. We identified sublines of hPSCs carrying trisomy 12 after their prolonged culture. Transcriptome analysis revealed that these hPSC sublines carried abnormal gene expression patterns in specific signaling pathways in addition to cancer-related cell cycle pathways. These hPSC sublines showed a lower propensity for mesendodermal differentiation in embryoid bodies cultured in a serum-free medium. BMP4-induced exit from the self-renewal state was impaired in the trisomy 12 hPSC sublines, with less upregulation of key transcription factor gene expression. As a consequence, the differentiation efficiency of hematopoietic and hepatic lineages was also impaired in the trisomy 12 hPSC sublines. We reveal that trisomy 12 disrupts the genome-wide expression patterns that are required for proper mesendodermal differentiation.

3.
In Vitro Cell Dev Biol Anim ; 56(7): 505-510, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32812205

RESUMO

Cleft lip and palate are the most common congenital abnormalities that occur early in pregnancy. The majority of cranial mesenchyme is derived from cranial neural crest cells that differentiate into odontoblasts, cartilage, craniofacial bone, and connective tissue. A subset of these cells differentiates into cranial ganglia. We have previously reported an induction protocol of cranial neural crest cell-like cells from human pluripotent stem cells. This study tested detection of the cytotoxic sensitivities of dental materials, including titanium ions, palladium ions, and hydroxyethyl methacrylate, on the cell viability of induced cranial neural crest cell-like cells (iNC-LCs) derived from Tic human induced pluripotent stem cell (hiPSC) line. Further, the sensitivity was compared with those of human fetal lung fibroblastic cell line MRC-5, which is origin of Tic hiPSC, and osteoblastic cell line MC3T3-E1 which was derived from mouse calvaria. The results suggested that this cell-based assay system using iNC-LCs is a potential method for in vitro screening as an alternative to animal testing to predict toxic effects of dental materials on early craniofacial development.


Assuntos
Bioensaio/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Crista Neural/citologia , Crânio/citologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metacrilatos/farmacologia , Paládio/farmacologia , Titânio/farmacologia
4.
Methods Mol Biol ; 1965: 35-48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069667

RESUMO

Cranial neural crest cells (NCCs) migrate to the branchial arches and give rise to the majority of cranial mesenchyme that eventually differentiates into odontoblasts, cartilage, craniofacial bone, and connective tissue; a subset of these cells differentiate into cranial ganglia. Here we present a protocol that describes directed differentiation method of human pluripotent stem cells into cranial NCC-like cells and a cytotoxicity assay using hPSC-derived cranial NCC-like cells. This cell-based assay system allows for high-sensitive cytotoxicity detection of test chemicals. These methods can be applied to predict drug/chemical toxicity effect on early craniofacial development.


Assuntos
Encéfalo/citologia , Crista Neural/citologia , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Humanos , Modelos Biológicos , Testes de Toxicidade
5.
Adv Exp Med Biol ; 1123: 71-94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016596

RESUMO

Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells, show heterogeneity with respect to their pluripotency, self-renewal ability, and other traits. PSC heterogeneity may exist among cell lines, among cells within a line, and among temporal states of individual cells. Both genetic and epigenetic factors can cause heterogeneity among cell lines. Heterogeneity among cells within a cell line may arise during long-term culturing even when a PSC cell line is derived from a single cell. Moreover, the expression levels of genes and proteins in PSCs fluctuate continuously at a frequency ranging from a few hours to a few days. Such heterogeneity decreases the reproducibility of research. Thus, methods related to the detection, reduction, and control of heterogeneity in experiments involving human PSCs need to be developed. Further, the presupposition that PSCs are highly heterogeneous should be taken into account by all researchers not only when they plan their own studies but also when they review the studies of other researchers in this field.


Assuntos
Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias , Humanos , Células-Tronco Pluripotentes Induzidas
6.
Synapse ; 73(1): e22067, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120794

RESUMO

Dysfunction of mitochondrial activity is often associated with the onset and progress of neurodegenerative diseases. Membrane depolarization induced by Na+ influx increases intracellular Ca2+ levels in neurons, which upregulates mitochondrial activity. However, overlimit of Na+ influx and its prolonged retention ultimately cause excitotoxicity leading to neuronal cell death. To return the membrane potential to the normal level, Na+ /K+ -ATPase exchanges intracellular Na+ with extracellular K+ by consuming a large amount of ATP. This is a reason why mitochondria are important for maintaining neurons. In addition, astrocytes are thought to be important for supporting neighboring neurons by acting as energy providers and eliminators of excessive neurotransmitters. In this study, we examined the meaning of changes in the mitochondrial oxygen consumption rate (OCR) in primary mouse neuronal populations. By varying the medium constituents and using channel modulators, we found that pyruvate rather than lactate supported OCR levels and conferred on neurons resistance to glutamate-mediated excitotoxicity. Under a pyruvate-restricted condition, our OCR monitoring could detect excitotoxicity induced by glutamate at only 10 µM. The OCR monitoring also revealed the contribution of the N-methyl-D-aspartate receptor and Na+ /K+ -ATPase to the toxicity, which allowed evaluating spontaneous excitation. In addition, the OCR monitoring showed that astrocytes preferentially used glutamate, not glutamine, for a substrate of the tricarboxylic acid cycle. This mechanism may be coupled with astrocyte-dependent protection of neurons from glutamate-mediated excitotoxicity. These results suggest that OCR monitoring would provide a new powerful tool to analyze the mechanisms underlying neurotoxicity and protection against it.


Assuntos
Ácido Glutâmico/toxicidade , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Animais , Respiração Celular , Células Cultivadas , Humanos , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácido Pirúvico/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Int J Dev Biol ; 62(9-10): 613-621, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30378385

RESUMO

Cell morphology is recognized as an important hallmark of neural cells. During the differentiation of human pluripotent stem cells (hPSCs) into neural cells, cell morphology changes dynamically. Therefore, characterization of the morphology of cells during this period is important to improve our understanding of the differentiation and development of neural cells. General methods for the directed induction of hPSCs include the steps of multi-cellular aggregation or high-density cell culture, particularly at the early phase of neural differentiation, and therefore, the morphology of each differentiating cell is difficult to recognize. Here, we have developed a new method for the directed differentiation of neuroepithelial-like cells (NELCs) from hPSCs at a low cell density in an adherent monolayer culture, as well as an image-processing algorithm to evaluate the cell morphology of differentiating NELCs, in order to follow cell morphology during the differentiation of hPSCs into NELCs. Using these methods, the morphological transition of differentiating cells was observed in real time using phase contrast imaging and then quantified. Because cell morphology is also considered an inherent biological marker of neural cells cultured in vitro, this method is potentially useful to study the mechanisms underlying neural cell differentiation.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células Neuroepiteliais/citologia , Neurogênese , Neurônios/citologia , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Neuroepiteliais/metabolismo , Neurônios/metabolismo
8.
J Biosci Bioeng ; 126(3): 379-388, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29681444

RESUMO

Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Adesão Celular/efeitos dos fármacos , Contagem de Células , Células Cultivadas , Embrião de Mamíferos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Análise Espacial , Propriedades de Superfície
9.
Exp Cell Res ; 352(2): 333-345, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28215634

RESUMO

Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células-Tronco Embrionárias/citologia , Hepatócitos/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
10.
In Vitro Cell Dev Biol Anim ; 53(1): 83-91, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27573412

RESUMO

Human pluripotent stem cells (hPSCs) provide a good model system for studying human development and are expected as a source for both cell-based medical and pharmaceutical research application. However, stable maintenance of undifferentiated hPSCs is yet challenging, and thus routine characterization is required. Flow-cytometry is one of the popular quantitative characterization tools for hPSCs, but it has drawback of spatial information loss of the cells in the culture. Here, we have applied a two-dimensional imaging cytometry that examines undifferentiated state of hPSCs to analyze localization and morphological information of immunopositive cells in the culture. The whole images of cells in a culture vessel were acquired and analyzed by an image analyzer, IN Cell Analyzer 2000, and determined staining intensity of the cells with their positional information. We have compared the expression of five hPSC-markers in four hPSC lines using the two-dimensional imaging cytometry and flow cytometry. The results showed that immunopositive ratios analyzed by the imaging cytometry had good correlation with those by the flow cytometry. Furthermore, the imaging cytometry revealed spatially heterogenic expression of hPSC-markers in undifferentiated hPSCs. Imaging cytometry is capable of reflecting minute aberrance without losing spatial and morphological information of the cells. It would be a powerful, useful, and time-efficient tool for characterizing hPSC colonies.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Citometria de Fluxo/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Forma Celular , Ensaio de Unidades Formadoras de Colônias , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos
11.
Stem Cells Dev ; 25(24): 1884-1897, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27733097

RESUMO

Functional hepatocytes derived from human pluripotent stem cells (hPSCs) have potential as tools for predicting drug-induced hepatotoxicity in the early phases of drug development. However, the propensity of hPSC lines to differentiate into specific lineages is reported to differ. The ability to predict low propensity of hPSCs to differentiate into hepatocytes would facilitate the selection of useful hPSC clones and substantially accelerate development of hPSC-derived hepatocytes for pharmaceutical research. In this study, we compared the expression of genes associated with hepatic differentiation in five hPSC lines including human ES cell line, H9, which is known to differentiate into hepatocytes, and an hPSC line reported with a poor propensity for hepatic differentiation. Genes distinguishing between undifferentiated hPSCs, hPSC-derived hepatoblast-like differentiated cells, and primary human hepatocytes were drawn by two-way cluster analysis. The order of expression levels of genes in undifferentiated hPSCs was compared with that in hPSC-derived hepatoblast-like cells. Three genes were selected as predictors of low propensity for hepatic differentiation. Expression of these genes was investigated in 23 hPSC clones. Review of representative cells by induction of hepatic differentiation suggested that low prediction scores were linked with low hepatic differentiation. Thus, our model using gene expression ranking and bioinformatic analysis could reasonably predict poor differentiation propensity of hPSC lines.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Hepatócitos/citologia , Células-Tronco Pluripotentes/citologia , Linhagem Celular , Linhagem da Célula/genética , Análise por Conglomerados , Endoderma/citologia , Perfilação da Expressão Gênica , Estudos de Associação Genética , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes/metabolismo
12.
Sci Rep ; 6: 34009, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27667091

RESUMO

Given the difficulties inherent in maintaining human pluripotent stem cells (hPSCs) in a healthy state, hPSCs should be routinely characterized using several established standard criteria during expansion for research or therapeutic purposes. hPSC colony morphology is typically considered an important criterion, but it is not evaluated quantitatively. Thus, we designed an unbiased method to evaluate hPSC colony morphology. This method involves a combination of automated non-labelled live-cell imaging and the implementation of morphological colony analysis algorithms with multiple parameters. To validate the utility of the quantitative evaluation method, a parent cell line exhibiting typical embryonic stem cell (ESC)-like morphology and an aberrant hPSC subclone demonstrating unusual colony morphology were used as models. According to statistical colony classification based on morphological parameters, colonies containing readily discernible areas of differentiation constituted a major classification cluster and were distinguishable from typical ESC-like colonies; similar results were obtained via classification based on global gene expression profiles. Thus, the morphological features of hPSC colonies are closely associated with cellular characteristics. Our quantitative evaluation method provides a biological definition of 'hPSC colony morphology', permits the non-invasive monitoring of hPSC conditions and is particularly useful for detecting variations in hPSC heterogeneity.

13.
Stem Cells Int ; 2016: 5380560, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656216

RESUMO

In recent years, as human pluripotent stem cells (hPSCs) have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM) protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK), which transmits ECM-integrin signaling to AKT (also known as protein kinase B), has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.

14.
Int J Dev Biol ; 60(1-3): 21-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934293

RESUMO

Neural crest (NC) cells are a group of cells located in the neural folds at the boundary between the neural and epidermal ectoderm. Cranial NC cells migrate to the branchial arches and give rise to the majority of the craniofacial region, whereas trunk and tail NC cells contribute to the heart, enteric ganglia of the gut, melanocytes, sympathetic ganglia, and adrenal chromaffin cells. Positional information is indispensable for the regulation of cranial or trunk and tail NC cells. However, the mechanisms underlying the regulation of positional information during human NC induction have yet to be fully elucidated. In the present study, supplementation of bone morphogenetic protein (BMP) 4 in defined serum-free culture conditions including fibroblast growth factor-2 and Wnt3a from day 8 after NC specification induced the expression of cranial NC markers, AP2alpha, MSX1, and DLX1, during NC cell differentiation from human pluripotent stem cells. On the other hand, the proportion of cells expressing p75(NTR) or HNK1 decreased compared with that of cells cultured without BMP4, whereas gene expression analysis demonstrated that the expression levels of cranial NC-associated genes increased in BMP4-treated NC cells. These BMP4-treated NC cells were capable of differentiation into osteocytes and chondrocytes. The results of the present study indicate that BMP4 regulates cranial positioning during NC development.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Crista Neural/citologia , Células-Tronco Pluripotentes/citologia , Ativação Transcricional/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Condrócitos/citologia , Condrócitos/metabolismo , Ossos Faciais/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Crânio/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
15.
Stem Cells Transl Med ; 5(3): 275-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26819254

RESUMO

Mitochondrial oxidative phosphorylation is a major source of cellular ATP. Its usage as an energy source varies, not only according to the extracellular environment, but also during development and differentiation, as indicated by the reported changes in the flux ratio of glycolysis to oxidative phosphorylation during embryonic stem (ES) cell differentiation. The fluorescent probe JC-1 allows visualization of changes in the mitochondrial membrane potential produced by oxidative phosphorylation. Strong JC-1 signals were localized in the differentiated cells located at the edge of H9 ES colonies that expressed vimentin, an early differentiation maker. The JC-1 signals were further intensified when individual adjacent colonies were in contact with each other. Time-lapse analyses revealed that JC-1-labeled H9 cells under an overconfluent condition were highly differentiated after subculture, suggesting that monitoring oxidative phosphorylation in live cells might facilitate the prediction of induced pluripotent stem cells, as well as ES cells, that are destined to lose their undifferentiated potency.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fosforilação Oxidativa , Trifosfato de Adenosina , Linhagem Celular , Rastreamento de Células/métodos , Metabolismo Energético , Corantes Fluorescentes/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Vimentina/biossíntese
16.
J Biol Chem ; 290(33): 20071-85, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26100630

RESUMO

We have generated a mouse monoclonal antibody (R-17F, IgG1 subtype) specific to human induced pluripotent stem (hiPS)/embryonic stem (ES) cells by using a hiPS cell line as an antigen. Triple-color confocal immunostaining images of hiPS cells with R-17F indicated that the R-17F epitope was expressed exclusively and intensively on the cell membranes of hiPS cells and co-localized partially with those of SSEA-4 and SSEA-3. Lines of evidence suggested that the predominant part of the R-17F epitope was a glycolipid. Upon TLC blot of total lipid extracts from hiPS cells with R-17F, one major R-17F-positive band was observed at a slow migration position close to that of anti-blood group H1(O) antigen. MALDI-TOF-MS and MS(n) analyses of the purified antigen indicated that the presumptive structure of the R-17F antigen was Fuc-Hex-HexNAc-Hex-Hex-Cer. Glycan microarray analysis involving 13 different synthetic oligosaccharides indicated that R-17F bound selectively to LNFP I (Fucα1-2Galß1-3GlcNAcß1-3Galß1-4Glc). A critical role of the terminal Fucα1-2 residue was confirmed by the selective disappearance of R-17F binding to the purified antigen upon α1-2 fucosidase digestion. Most interestingly, R-17F, when added to hiPS/ES cell suspensions, exhibited potent dose-dependent cytotoxicity. The cytotoxic effect was augmented markedly upon the addition of the secondary antibody (goat anti-mouse IgG1 antibody). R-17F may be beneficial for safer regenerative medicine by eliminating residual undifferentiated hiPS cells in hiPS-derived regenerative tissues, which are considered to be a strong risk factor for carcinogenesis.


Assuntos
Anticorpos/imunologia , Citotoxicidade Imunológica , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligossacarídeos/imunologia , Sequência de Carboidratos , Linhagem Celular , Humanos , Dados de Sequência Molecular , Oligossacarídeos/química
17.
Stem Cells Transl Med ; 4(7): 720-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25972146

RESUMO

UNLABELLED: : Cell growth is an important criterion for determining healthy cell conditions. When somatic cells or cancer cells are dissociated into single cells for passaging, the cell numbers can be counted at each passage, providing information on cell growth as an indicator of the health conditions of these cells. In the case of human pluripotent stem cells (hPSCs), because the cells are usually dissociated into cell clumps of ∼50-100 cells for passaging, cell counting is time-consuming. In the present study, using a time-lapse imaging system, we developed a method to determine the growth of hPSCs from nonlabeled live cell phase-contrast images without damaging these cells. Next, the hPSC colony areas and number of nuclei were determined and used to derive equations to calculate the cell number in hPSC colonies, which were assessed on time-lapse images acquired using a culture observation system. The relationships between the colony areas and nuclei numbers were linear, although the equation coefficients were dependent on the cell line used, colony size, colony morphology, and culture conditions. When the culture conditions became improper, the change in cell growth conditions could be detected by analysis of the phase-contrast images. This method provided real-time information on colony growth and cell growth rates without using treatments that can damage cells and could be useful for basic research on hPSCs and cell processing for hPSC-based therapy. SIGNIFICANCE: This is the first study to use a noninvasive method using images to systemically determine the growth of human pluripotent stem cells (hPSCs) without damaging or wasting cells. This method would be useful for quality control during cell culture of clinical hPSCs.

18.
In Vitro Cell Dev Biol Anim ; 51(8): 769-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25898826

RESUMO

Neural differentiation is an important target of human embryonic stem cells, which provide a source for cell-based therapy, developmental biology, and pharmaceutical research. Previous studies revealed that inhibition of the bone morphogenetic protein is required for neural induction from human embryonic stem cells. On the contrary, the functions of fibroblast growth factors and Activin/Nodal signaling are controversial. Fibroblast growth factor-2 and Activin/Nodal pathways exert divergent influences on human embryonic stem cell concerning the maintenance of both pluripotency and cellular differentiation. We hypothesized that the combination of fibroblast growth factor-2 and Activin A at various concentrations synergistically exerts diverse effects on cell differentiation. To determine the effects of fibroblast growth factor-2 and Activin A on cellular differentiation into neural lineages, we examined the expression of neural differentiation markers in human embryonic stem cells treated with fibroblast growth factor-2 and/or Activin A at various concentrations in a growth factor-defined serum-free medium in short-term culture. In this study, we provide evidence that fibroblast growth factor-2 and Activin A synergistically regulated the initiation of human embryonic stem cell differentiation into neural cell lineages even though human embryonic stem cells autonomously differentiate into neural cell lineages.


Assuntos
Ativinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia
19.
Sci Rep ; 4: 4646, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24721898

RESUMO

Enzymes used for passaging human pluripotent stem cells (hPSCs) digest cell surface proteins, resulting in cell damage. Moreover, cell dissociation using divalent cation-free solutions causes apoptosis. Here we report that Mg(2+) and Ca(2+) control cell-fibronectin and cell-cell binding of hPSCs, respectively, under feeder- and serum-free culture conditions without enzyme. The hPSCs were detached from fibronectin-, vitronectin- or laminin-coated dishes in low concentrations of Mg(2+) and remained as large colonies in high concentrations of Ca(2+). Using enzyme-free solutions containing Ca(2+) without Mg(2+), we successfully passaged hPSCs as large cell clumps that showed less damage than cells passaged using a divalent cation-free solution or dispase. Under the same conditions, the undifferentiated and early-differentiated cells could also be harvested as a cell sheet without being split off. Our enzyme-free passage of hPSCs under a serum- and feeder-free culture condition reduces cell damage and facilitates easier and safer cultures of hPSCs.


Assuntos
Cátions Bivalentes/metabolismo , Células-Tronco Pluripotentes/citologia , Cálcio/química , Cálcio/metabolismo , Cátions Bivalentes/química , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Endopeptidases/metabolismo , Fibronectinas/metabolismo , Humanos , Cariotipagem , Magnésio/química , Magnésio/metabolismo , Células-Tronco Pluripotentes/metabolismo
20.
PLoS One ; 9(3): e90791, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651531

RESUMO

Human embryonic stem cells (hESCs) could provide a major window into human developmental biology, because the differentiation methods from hESCs mimic human embryogenesis. We previously reported that the overexpression of hematopoietically expressed homeobox (HHEX) in the hESC-derived definitive endoderm (DE) cells markedly promotes hepatic specification. However, it remains unclear how HHEX functions in this process. To reveal the molecular mechanisms of hepatic specification by HHEX, we tried to identify the genes directly targeted by HHEX. We found that HHEX knockdown considerably enhanced the expression level of eomesodermin (EOMES). In addition, HHEX bound to the HHEX response element located in the first intron of EOMES. Loss-of-function assays of EOMES showed that the gene expression levels of hepatoblast markers were significantly upregulated, suggesting that EOMES has a negative role in hepatic specification from the DE cells. Furthermore, EOMES exerts its effects downstream of HHEX in hepatic specification from the DE cells. In conclusion, the present results suggest that HHEX promotes hepatic specification by repressing EOMES expression.


Assuntos
Linhagem da Célula , Proteínas de Homeodomínio/metabolismo , Fígado/citologia , Proteínas com Domínio T/genética , Fatores de Transcrição/metabolismo , Animais , Biomarcadores/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Endoderma/efeitos dos fármacos , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Interferente Pequeno/metabolismo , Elementos de Resposta/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Transfecção , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...